Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069799

RESUMO

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
2.
Redox Biol ; 36: 101647, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863237

RESUMO

Controlling inflammation is critical for preventing many diseases including cancer, autoimmune disorders and hypersensitivity reactions. NF-E2-related factor 2 (Nrf2) is a key transcription factor that controls the cellular antioxidant and cytoprotective response. Moreover, Nrf2 has been implicated in the regulation of inflammatory processes, although the ultimate mechanism by which this is achieved is unknown. Here, we investigated mechanisms of inflammation and cell death pathways induced by a variety of Nrf2 activators including dimethyl fumarate (DMF) and the endogenous metabolite itaconate. We found that exposure of bone marrow-derived dendritic cells (BMDCs) to low concentrations of a variety of electrophilic Nrf2 activators including itaconate prior to Toll-like receptor (TLR) stimulation inhibits transcription of pro-inflammatory cytokines (such as interleukin [IL]-12 and IL-1ß) by activation of Nrf2. By contrast, high doses of these electrophilic compounds after TLR activation promote inflammatory apoptosis and caspase-8-dependent IL-1ß processing and release independently of Nrf2. Interestingly, tert-butylhydroquinone (tBHQ), a non-electrophilic Nrf2-activator, failed to induce IL-1ß production. These results have important implications for clinical application of electrophilic compounds.


Assuntos
Fator 2 Relacionado a NF-E2 , Piroptose , Humanos , Inflamação , Succinatos/farmacologia
3.
Cell Rep ; 30(13): 4399-4417.e7, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234476

RESUMO

Oxidized lipids play a critical role in a variety of diseases with two faces: pro- and anti-inflammatory. The molecular mechanisms of this Janus-faced activity remain largely unknown. Here, we have identified that cyclopentenone-containing prostaglandins such as 15d-PGJ2 and structurally related oxidized phospholipid species possess a dual and opposing bioactivity in inflammation, depending on their concentration. Exposure of dendritic cells (DCs)/macrophages to low concentrations of such lipids before Toll-like receptor (TLR) stimulation instigates an anti-inflammatory response mediated by nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent inhibition of nuclear factor κB (NF-κB) activation and downstream targets. By contrast, high concentrations of such lipids upon TLR activation of DCs/macrophages result in inflammatory apoptosis characterized by mitochondrial depolarization and caspase-8-mediated interleukin (IL)-1ß maturation independently of Nrf2 and the classical inflammasome pathway. These results uncover unexpected pro- and anti-inflammatory activities of physiologically relevant lipid species generated by enzymatic and non-enzymatic oxidation dependent on their concentration, a phenomenon known as hormesis.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclopentanos/farmacologia , Inflamação/patologia , Prostaglandinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Antígenos CD40/metabolismo , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Inflamassomos/metabolismo , Inflamação/genética , Interleucinas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Fenótipo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/química , Prostaglandina D2/farmacologia , Transdução de Sinais , Células Th1/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 505(1): 87-92, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241945

RESUMO

The mammalian paraoxonases (PONs 1, 2 and 3) are a family of esterases that are highly conserved within and between species. They exhibit antioxidant and anti-inflammatory activities. However, their physiological function(s) and native substrates are uncertain. Previous structure-activity relationship studies demonstrate that PONs have a high specificity for lipophilic lactones, suggesting that such compounds may be representative of native substrates. This report describes the ability of PONs to hydrolyze two bioactive δ-lactones derived from arachidonic acid, 5,6-dihydroxy-eicosatrienoic acid lactone (5,6-DHTL) and cyclo-epoxycyclopentenone (cyclo-EC). Both lactones were very efficiently hydrolyzed by purified PON3. PON1 efficiently hydrolyzed 5,6-DHTL, but with a specific activity about 15-fold lower than PON3. 5,6-DHTL was a poor substrate for PON2. Cyclo-EC was a poor substrate for PON1 and not hydrolyzed by PON2. Studies with the PON inhibitor EDTA and a serine esterase inhibitor indicated that the PONs are the main contributors to hydrolysis of the lactones in human and mouse liver homogenates. Studies with homogenates from PON3 knockout mouse livers indicated that >80% of the 5,6-DHTL and cyclo-EC lactonase activities were attributed to PON3. The findings provide further insight into the structural requirements for PONs substrates and support the hypothesis that PONs, particularly PON1 and PON3, evolved to hydrolyze and regulate a class of lactone lipid mediators derived from polyunsaturated fatty acids.


Assuntos
Arildialquilfosfatase/metabolismo , Eicosanoides/metabolismo , Lactonas/metabolismo , Animais , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Arildialquilfosfatase/genética , Eicosanoides/química , Células HEK293 , Humanos , Hidrólise , Lactonas/química , Fígado/metabolismo , Camundongos Knockout , Estrutura Molecular , Especificidade por Substrato
5.
Org Lett ; 20(10): 3014-3016, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29737177

RESUMO

The lactone derivative of the epoxyisoprostane EC is a highly effective inhibitor of the secretion of the proinflammatory cytokine IL-6. Herein, a modular synthesis of analogues is described, allowing flexible variations of the cyclic side chain of the parent lactone. A structure-activity relationship study identified a lactam analogue that retains the high activity. Furthermore, the exocyclic allylic alcohol was shown to be crucial for the observed effect.


Assuntos
Anti-Inflamatórios/síntese química , Compostos de Epóxi/síntese química , Citocinas , Estrutura Molecular , Relação Estrutura-Atividade
6.
Angew Chem Int Ed Engl ; 56(36): 10890-10893, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28691326

RESUMO

The first total synthesis of the tetracyclic sesquiterpenoid (+)-dendrowardol C is described. It relies on an intramolecular aldol reaction to forge the central bicyclic scaffold and subsequent cyclobutane formation by cyclization of a γ-triflyloxy ketone. Key is the treatment of the latter with lithium naphthalenide. Finally, the diastereoselective hydroboration of a 1,1-disubstituted double bond is enabled by a chiral CoI catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...